

Infocus
< http://www.securityfocus.com/infocus/1673 >

Cryptographic Filesystems, Part One: Design and Implementation
by Ido Dubrawsky
last updated March 7, 2003

As security becomes a greater focus in networks, every aspect of online information needs a
level of protection from the network-level use of firewalls and IDS to the host-level use of
IDS. However, an additional level of security has recently come to the forefront of security -
cryptographic filesystems. While the technology for cryptographic filesystems has been
available for quite a while, the deployment of cryptographic filesystems in production
environments has not taken hold. This article will discuss some of the background and
technology of cryptographic filesystems and will then cover some example implementations
of these filesystems including Microsoft's Encrypting File System for Windows 2000, the
Linux CryptoAPI, and the Secure File System.

Cryptographic Filesystem Types

There are several approaches to cryptographic filesystems. These vary from volume
encryptors to filesystem encryptors to file encryptors. Each of these approaches has its merits
as well as its drawbacks and is discussed in more detail below.

Volume Encryptors

Volume encryptors use the device driver layer to encrypt and decrypt information to and from
a physical disk. Such systems include systems as PGPDisk, the Secure File System (SFS), the
Linux CryptoAPI and ScramDisk. Volume encryptors encrypt whole drives and are
convenient to use since they are transparent to the end user. However, volume encryptors do
not provide fine-grained access control to individual directories or files.

File Encryptors

File encryptors operate at the application or presentation layer to provide true end-to-end file
encryption. In order to provide some sort of transparency to the end-user file, encryptors
typically require some measure of application rewrite in order to support encryption. File
encryptor systems include such tools as PGP. For small numbers of files these types of
encryptors are adequate but they do not scale well to storage systems.

File System Encryptor

File system encryptors allow the encryption of files on a per-file or a per-directory basis using
a single key. Systems such as these include the Cryptographic File System (CFS) developed

mailto:idubraws@cisco.com

by Matt Blaze, the Transparent Cryptographic File System (TCFS) supported under Linux and
BSD, CryptFS, as well as Microsoft's EFS under Windows 2000.

Cryptographic Filesystem Design

CryptFS

One implemention of a cryptographic filesystem is through the use of a kernel-resident
filesystem. This implementation model is used in CryptFS. Using this implementation model,
the file system can be mounted on any directory as well as on top of another file system such
as UFS or NFS[1]. This model also removes the need for additional daemon processes that
can possibly be exploited to gain access to the system or possibly to the files. The interface
used by CryptFS is through a stackable V-node (Virtual Node). Unix-based operating systems
use vnodes to represent an open file, directory, device, or other objects. The vnodes do not
expose what type of physical file system they implement. CryptFS uses a concept called V-
node stacking, which allows for filesystem function modularization where one V-node
interface calls another. V-node stacking is shown in Figure 1 below.

Figure 1: Stackable V-node Interface Design

Each V-node operation in CryptFS calls its next-lower layer function for filesystem specific
operations. Originally developed for Solaris, CryptFS has also been ported to Linux and
FreeBSD. CryptFS inserts itself on top of any directory, encrypts file data before it is passed
to the file system, and decrypts it in the reverse direction. The designers of CryptFS also
provide for a key management scheme where only the root user can actually mount an
instance of CryptFS and user keys would be associated not only with a UID but also a session
ID. An attacker would not only have to break into an account but also have his processes use
the same session ID as the users process in order to acquire or change a user's key. CryptFS
uses blowfish in CBC mode as its encryption algorithm.

http://www.cs.columbia.edu/%7Eezk/research/cryptfs/index.html

The CryptFS is available to the general public as part of the File Systems Software Package
(fistgen). It can be found here.

Linux CryptoAPI

While the Linux CryptoAPI is not, strictly speaking, a filesystem encryption system, it does
provide for that capability. The original kernelint patch was designed to provide filesystem
encryption capabilities in the 2.2 series kernels. The development of the kernelint patch into a
general purpose API for kernel-space encryption represents the next logical evolutionary step.
The loopback device allows for a level of indirection when mounting a filesystem whereby
system calls can be intercepted to provide encryption and decryption of filesystem data.
Instead of mounting the filesystem directly on a given directory the filesystem can be
mounted on the loopback device. The loopback device is then mounted on the directory
mount point. This configuration has the effect of sending all kernel commands to the
filesystem through the loopback device. The process is shown in Figures 2 and 3.

Figure 2: CryptoAPI Encryption

Figure 3: CryptoAPI Decryption

The CryptoAPI software can be downloaded from the GNU/Linux CryptoAPI site.

Microsoft's Encrypted FileSystem (EFS)

Microsoft's EFS is implemented using a public key-based scheme. File data is encrypted using
a fast symmetric algorithm with a file encryption key that is randomly generated. This key is
encrypted itself using one or more public keys obtained from a user's X.509 version 3
certificate. The private portion of the private-public key is used to decrypt the file encryption
key, which is then used to decrypt the file. Microsoft's EFS does not support using a
symmetric algorithm using a password-based key because of the concern that these password
based schemes are weaker due to their susceptibility to dictionary attacks. EFS also provides
for the encryption of the File Encryption Key with one or more recovery key public keys, this

ftp://shekel.mcl.cs.columbia.edu/pub/fist
http://www.kerneli.org/

allows for the possibility of the recovery of the file data should an individual leave an
organization or lose their key. The encryption and decryption processes are shown in Figures
4 and 5 below.

Figure 4: Microsoft EFS Encryption (from [3])

Figure 5: Microsoft EFS Decryption (from [3])

EFS is designed to be transparent to the end-user under normal circumstances. When a user
attempts to access one of their encrypted files, the EFS will locate the private key used to
encrypt the File Encryption Key that encrypted the file, decrypt the File Encryption Key, and
decrypt the file. If an attempt is made to access a file encrypted by another user, EFS will fail
to find the private key that can be used to decrypt the File Encryption Key and the user will be
presented with an "Access Denied" condition.

Microsoft's implementation of EFS is shown in Figure 6. This architecture is broken up into
four primary categories: the EFS driver, FileSystem Run-Time Library, the EFS service, and
various Win32 APIs. The driver is layered on top of the NTFS filesystem. It communicates

with the EFS service to request file encryption keys and other services. The driver passes this
information to the run-time library in order to perform various file system operations. The
EFS driver and run-time library do not communicate directly but rather use the NTFS file
control call-out mechanism to communicate. The EFS service is part of the security
subsystem and uses the port between the Local Security Authority (LSA) and the kernel-mode
security reference monitor in order to communicate with the EFS driver. The EFS service
interfaces with the CryptoAPI (not the same CryptoAPI for Linux) in user-mode to provide
file encryption keys and other services. It also provides support for Win32 APIs that provide
the programming interfaces for encrypting, decrypting or recovering files, as well as the
importing and exporting of encrypted files.

Figure 6: EFS Architecture (from [3])

EFS currently only supports the DESX encryption algorithm, which is based on a 128-bit
encryption key. Microsoft says that future releases of EFS will support alternate encryption
algorithms.

Summary

Cryptographic filesystems have made significant progress in the past few years. The
capability of providing transparent encryption services to users in order to protect the data
stored on a filesystem has become more enticing as networks are increasingly coming under
attack from both external and internal sources. One of the key tenets of a solid security policy
is the capability to ensure the integrity of data stored on network systems. Cryptographic
filesystems make this increasingly possible by easing the effort of encrypting files.

References

[1] Zadok, Erez, Ion Badulescu and Alex Shender, "Cryptfs: A Stackable Vnode Level
Encryption File System", CUCS-021-98,
http://www.cs.columbia.edu/~ezk/research/cryptfs/cryptfs.pdf, 1998

http://www.cs.columbia.edu/%7Eezk/research/cryptfs/cryptfs.pdf

[2] Bryson, David, "Using CryptoAPI",
http://www.kerneli.org/howto/node3.php, 2002.

[3] Microsoft, "Encrypting File System for Windows 2000",
http://www.microsoft.com/windows2000/techinfo/howitworks/security/encrypt.asp, 1998.

Infocus
< http://www.securityfocus.com/infocus/1685 >

Cryptographic File Systems, Part Two: Implementation
by Ido Dubrawsky
last updated April 14, 2003

This is the second article in a two-part series looking at cryptographic filesystems. The
 in this series covered the background on cryptographic filesystems from the underlying

concepts to some of the mechanics of those systems. This article will cover implementation.
The focus will be on implementing the Microsoft's EFS under Windows 2000 and the Linux
CryptoAPI.

first
article

One point to clarify from the first article involves the note that Microsoft's EFS does not
support using a password-based symmetric algorithm. This is due to the concern that such
schemes are weaker because of their susceptibility to dictionary attacks. While technically
accurate, the fact remains that the public portion of the user's X.509v3 certificate (which is
used to encrypt the File Encryption Key, or FEK, used by EFS) is used to encrypt the FEK.
To decrypt the FEK requires the use of password or passphrase and unless password-based
logon is disabled completely this password or passphrase is typically the user's domain
password.

Microsoft Windows 2000 EFS

Microsoft's Windows 2000 product introduced the encrypting file system (EFS) to the
Windows product line. While third party add-on encrypting software has been available for
some time, EFS was the integration of such a concept into Windows 2000. Under Windows
2000, EFS supports the DESX algorithm only. With Windows XP that encryption algorithm
now includes 3DES as well and will eventually include the Advanced Encryption Standard
(AES) algorithm.

Set-Up

Using EFS is very easy. Windows 2000 supports both a command line method as well as a
graphical method of encrypting files with EFS. Encrypting individual files and folders is very
easy under Windows 2000. The tricky part is when those files and folders are moved either to
different computers or stored on another computer because the appropriate certificate and
private keys must also be stored with the files on that computer in order to be able to decrypt
the files.

http://www.kerneli.org/howto/node3.php
http://www.microsoft.com/windows2000/techinfo/howitworks/security/encrypt.asp

Encrypting/Decrypting a File: Graphical Method

Encrypting a file is as simple as clicking on the file with the right mouse button and opening
up the file properties as shown below.

Next, select the "Advanced" button at the bottom right of the properties panel to bring up the
"Advanced Attributes" window. At the bottom of this window is a checkbox entitled "Encrypt
Contents to secure data". Select the checkbox and click "OK".

When the "Advanced Attributes" windows has closed, select "Apply" at the lower right of the
properties window. This will bring up a new dialog window up asking if you want to encrypt
only the selected file or the selected file and its parent folder. Select one of these two options
and click the "OK" button at the lower right.

Once the file has been encrypted it can still be accessed just like any other file. The file does
not have to be decrypted to view it because the entire encryption/decryption process is
automatic and transparent. To decrypt a file completely (that is where it is not stored on the
disk encrypted) simply open the file properties panel by right clicking on the file or folder.
Select the Advanced Attributes button and de-select the "Encrypt Contents to secure data"
checkbox. Apply the properties to the file and it reverts back to a normal, unencrypted file
which can be viewed by other users (depending on the NTFS attributes of the file).

Encrypting/Decrypting a File: Command Line Method

Encrypting and decrypting a file using the Windows command line is easier than with the
graphical method. The cipher.exe program is used to encrypt/decrypt a file or a folder and its
contents. An example is shown below. To encrypt a file the command is:

c:cipher.exe /e "D:\crypto\file.txt"

To encrypt a folder and all of its subfolders and files:

c:cipher.exe /e /s "D:\crypto"

To decrypt, simply change the /e flag to a /d as shown below:

c:cipher.exe /d /s "D:\crypto"

Remember, to just decrypt a file don't use the /s flag.

There are significantly more complex challenges with regards to EFS when files are moved
from one computer to another. In order to provide encryption/decrytion capabilities with the
same FEK on different computers, users will have to export their keys using the Microsoft
Management Console on one system and import them on other systems. Microsoft provides a
step-by-step guide to using EFS including how to export and import FEKs. It is available
here.

Linux CryptoAPI Implementation

Implementing a cryptographic filesystem under Linux is not much harder than the
implementation under Windows 2000. Three (and possibly four, depending on your Linux
software) items are required to implement CryptoAPI under Linux -- a current version of the
Linux Kernel the CryptoAPI source code and the cryptoloop software. Both of these should
be downloaded, their signatures checked, and then unpacked. The CryptoAPI version should
match relatively closely, if not exactly, with the kernel version.

[root@charybdis cryptoapi-0.1.0]# bzip2 -dc /opt/software/kernel/linux-2.4.20.tar.bz2 | tar -
xvf -
[root@charybdis cryptoapi-0.1.0]# bzip2 -dc cryptoapi-0.1.0.tar.bz2 | tar -xvf -
[root@charybdis cryptoapi-0.1.0]# bzip2 -dc cryptoloop-0.0.1-pre1.tar.bz2 | tar -xvf -

Two patches to the loopback filesystem device driver are provided in the CryptoAPI sources.
The first is the loopiv (iv stands for initialization vector) patch, which provides minimal
support for the CryptoAPI, and the second is the loop-jari patch, which also provides support
for CryptoAPI as well as some bug fixes.

Once the kernel and the CryptoAPI source code have been unpacked, you will need to
configure the kernel before applying the CryptoAPI patches. The process can be done for an
existing kernel by using the current configuration in place. The following instructions are for
building a new kernel with the CryptoAPI. Once the kernel has been configured you can
apply the CryptoAPI patches using the command:

[root@charybdis cryptoapi-0.1.0]# make patch-kernel KDIR=< kernel dir > LOOP= < iv|jari
>

http://www.microsoft.com/windows2000/techinfo/planning/security/efssteps.asp
http://www.kernel.org/
http://www.kernel.org/pub/linux/kernel/crypto
http://www.kernel.org/pub/linux/kernel/crypto/v2.4/testing

[root@charybdis cryptoloop-0.0.1-pre1]# make patch-kernel KDIR=< kernel dir > LOOP= <
iv|jari>

Once the patches have been applied, change to the kernel source directory, build the kernel
and install it. With the new kernel built and installed it is recommended that the system be
rebooted with the new kernel. After the new kernel is functioning build the CryptoAPI
modules using the following syntax:

[root@charybdis cyrptoapi-0.1.0]# make modules KDIR=< kernel dir >

Once the CryptoAPI modules are built, install them:

[root@charybdis cyrptoapi-0.1.0]# make modules_install

One final piece of the puzzle is a patch for losetup program. Depending on the Linux
distribution the losetup program may or may not need to be patched. This patch provides the
losetup program the ability to tell the kernel which cipher and key to use for the encrypted
devices that will be configured. The patch is available at SourceForge. Some newer Linux
versions contain an losetup with the patch already installed.

http://sourceforge.net/project/showfiles.php?group_id=30957

Once the system is set up it is very easy to bring the CryptoAPI into play. What needs to be
determined is how the encrypted filesystem will be implemented. There are two ways to
handle this: a physical filesystem or a virtual filesystem. A physical filesystem would entail
creating an encrypted filesystem on a disk partition. A virtual filesystem is essentially a very
large empty file that can be mounted through the loopback device. The example below
focuses on the latter. Creating an empty file simply requires setting aside space within a
physical filesystem as a large file. To do this:

[root@charybdis cyrptoapi-0.1.0]# dd if=/dev/zero if=/oracle/testfs bs=1M count=50

It is just as valid to use /dev/urandom to fill the empty file with random data. Once that is
done, the next step is to load the cryptoapi, cryptoloop, and the cipher kernel modules.

[root@charybdis cyrptoapi-0.1.0]# modprobe cryptoloop
[root@charybdis cyrptoapi-0.1.0]# modprobe cryptoapi
[root@charybdis cyrptoapi-0.1.0]# modprobe cipher-des

Once that is done the filesystem device can be mounted through the loopback device:

[root@charybdis cyrptoapi-0.1.0]# losetup -e des /dev/loop0 /oracle/testfs
Password:
Init (up to 16 hex digits):

Once the loopback device is set up the filesystem needs to be made on it:

[root@charybdis cyrptoapi-0.1.0]# mkfs -t ext3 /dev/loop0

Now the filesystem is ready to be mounted:

[root@charybdis cyrptoapi-0.1.0]# mount -t ext3 /dev/loop0 /mnt/testfs

All files placed in this filesystem will be encrypted. Be aware that it is not recommended that
the filesystem be too large because of the potential performance hit that will occur. Remember
that anything written to and read from must be encrypted and decrypted respectively.
CryptoAPI provides the capability to create encrypted filesystems that are transparent to
system users.

Summary

The main benefit of using encrypted filesystems comes from the ability to secure sensitive
data beyond what is normally capable in a system. This additional security is dependent not
only on the strength of the encryption algorithm but also on its proper use by users and
administrators. An encrypted filesystem is of no use if the user or the administrator do not
properly handle the keys used to encrypt the data on the filesystem.

Relevant Links

Cryptographic Filesystems, Part One: Design and Implementation
Ido Dubrawsky

Copyright © 1999-2003 SecurityFocus

http://www.securityfocus.com/infocus/1673

